Stimulation of Increases in Intracellular Calcium and Prostaglandin E₂ Generation in Chinese Hamster Ovary Cells Expressing Receptor-**G**α**16 Fusion Proteins**

Hinako Suga[*,1,2,](#page-0-0) Shigeki Takeda†[,1,3](#page-0-0), Tatsuya Haga[1,3,](#page-0-0) Michiko Okamura[1,](#page-0-0) Kyoichi Taka[o4](#page-0-0) and Kazuhiko Tatemoto[2](#page-0-0)

1Department of Neurochemistry, Graduate School of Medicine, the University of Tokyo, Hongo, Bunkyo-ku, Tokyo 113-0033; 2Department of Molecular Physiology, Institute for Molecular and Cellular Regulation, Gunma University, Showa-machi, Maebashi, Gunma 371-8512; 3Institute for Biomolecular Science, Gakushuin University, Mejiro, Toshima-ku, Tokyo 171-8588; and 4Department of Receptor Biology, Advanced Medical Research Center, Nihon University School of Medicine, Oyaguchi-kamimachi, Itabashi-ku, Tokyo 173-8610

Received January 21, 2004; accepted February 6, 2004

We examined whether fusion proteins of G protein-coupled receptors with the α **subunit of G16 (G**α**16) could activate downstream signals. We expressed fusion proteins of** G_i -coupled receptors, *i.e.* CX_3C chemokine receptor 1 (CX_3CR1) and M_2 receptor, in Chinese hamster ovary cells. An agonist for CX₃CR1 induced greater increases in intracellular Ca²⁺ and prostaglandin E_2 generation in cells expressing $CX_3CR1-Ga_{16}$ **fusion protein than in cells expressing** CX_3CR1 **alone or both** CX_3CR1 **and** Ga_{16} **sepa**rately. Similarly, agonist-induced prostaglandin E₂ generation was greater in cells expressing M_2 -G α_{16} fusion protein than ones expressing M_2 alone or both M_2 and G α_{16} **separately. In cells expressing fusion proteins with G**α**16 of Gq-coupled receptors,** *i.e.* urotensin II receptor and M_1 receptor, the relevant agonists induced similar increases in intracellular Ca^{2+} and prostaglandin E_2 generation as in ones expressing **the receptor alone. In cells expressing urotensin II receptor-G**α**16 fusion protein, pros**taglandin E_2 generation exhibited a lower EC_{50} value than the intracellular Ca^{2+} **increase. These results indicate that agonist-stimulated receptor-G**α**16 fusion proteins are coupled to downstream signaling pathways, and suggest that receptor-G**α**16 fusion proteins may be useful for screening for ligands of orphan G protein-coupled receptors and Gi -coupled receptors.**

Key words: Chinese hamster ovary (CHO) cell, G protein, G protein-coupled receptor, intracellular calcium, prostaglandin.

Abbreviations: CHO, Chinese hamster ovary; CX₃CR1, CX₃C chemokine receptor 1; G α , α subunit of G protein; GPCR, G protein-coupled receptor; PGE_2 , prostaglandin E_2 ; RT-PCR, reverse transcriptase-polymerase chain reaction; sFKN, soluble fractalkine; [35S]GTPγS, guanosine 5′-*O*-(3-[35S]thiotriphosphate).

G protein-coupled receptors (GPCRs) constitute one of the largest families of genes in the human genome, and are among the largest targets for drug development (*[1](#page-7-0)*[–](#page-7-1) *[3](#page-7-1)*). Although a large number of GPCR genes have recently been cloned, the endogenous ligands for many of them have not yet been identified (*[1](#page-7-0)*–*[6](#page-7-2)*). Various assay systems have been employed to identify agonists or antagonists for GPCRs, but there is still no simple and general method for screening for ligands of $\mathrm{G}_\mathrm{i}\text{-coupled}$ receptors and orphan GPCRs.

 G_{15} and G_{16} are G proteins that are primarily found in hematopoietic cells (*[7](#page-7-3)*, *[8](#page-7-4)*). They have been shown to be promiscuously activated by different kinds of GPCRs and to activate phospholipase Cβ (*[9](#page-7-5)*, *[10](#page-7-6)*), although some GPCRs

are reported not to activate G_{15} or G_{16} ([10](#page-7-6), [11](#page-7-7)). Several ${\rm ligands}$ for orphan ${\rm G}_{\rm i}$ -coupled receptors have been identified by using human embryonic kidney 293 cells expressing the α subunit of G₁₆ (G α_{16}), indicating the usefulness of Ga_{15} and Ga_{16} ([12](#page-7-8), [13](#page-7-9)).

Fusion proteins of GPCRs with Ga have been developed to study the interactions between GPCRs and G proteins (*[14](#page-7-10)*–*[16](#page-7-11)*). This strategy takes advantage of the physical proximity of GPCRs and Gα molecules in the cell and their 1:1 stoichiometry. GPCRs and Ga have been found to interact more efficiently when they are expressed as fused proteins than when they are separately expressed. Examples include fusion proteins of β_2 adrenoceptor with Ga_s ([17](#page-7-12), [18](#page-7-13)), IP prostanoid receptor with Ga_s ([19](#page-7-14)), adenosine A_1 receptor with Ga_i ([20](#page-7-15)), and Edg2 receptor with Ga_{i1} ([21](#page-7-16)). These findings suggested that fusion proteins of GPCR with Ga_{16} may be utilized to screen ligands for GPCRs.

Previously we expressed fusion proteins with Ga_{16} of muscarinic acetylcholine receptor M_1 , M_2 subtypes (M_1) and M_2 receptors), and β_2 -adrenoceptor, which are coupled to G_q , G_i , and G_s family G proteins, respectively, in

^{*}To whom correspondence should be addressed. Department of Molecular Physiology, Institute for Molecular and Cellular Regulation, Gunma University, Tel: +81-27-220-8847, Fax: +81-27-220- 8849, E-mail: hsuga@showa.gunma-u.ac.jp

[†]Present address: Department of Nano-Material Systems, Graduate School of Engineering, Gunma University, Tenjin-cho, Kiryu, Gunma 376-8515.

insect Sf9 cells as model systems, and examined the effects of agonists on these fusion proteins in membrane preparations (*[22](#page-7-17)*). An agonist-dependent increase in guanosine 5′-*O*-(3-[35S]thiotriphosphate) ([35S]GTPγS) binding activity was detected for these GPCR- Ga_{16} fusion proteins, but the extent of the effect was much less than that for fusion proteins with $\text{G}\alpha_{\text{i1}}$ or $\text{G}\alpha_{\text{i2}}$ of G_{i} -coupled receptors (*[22](#page-7-17)* and unpublished data *[41](#page-8-0)*). In the present study, we have examined if cells expressing GPCR-G α_{16} fusion proteins could be used as ligand screening systems. We constructed cDNAs encoding fusion proteins with Ga_{16} for four GPCRs– CX_3C chemokine receptor 1 (CX_3CR1), $M₂$ receptor, urotensin II receptor, and $M₁$ receptor. $CX₃CR1$ and $M₂$ receptor are GPCRs that are coupled to Gi family G proteins (*[23](#page-7-18)*–*[26](#page-7-19)*), while urotensin II receptor and M_1 receptor are coupled to G_0 family G proteins ([25](#page-7-20)[,](#page-7-21) [27](#page-7-21), [28](#page-7-22)). Since it is usually difficult to identify the species of G proteins coupled to a given orphan GPCR (*[1](#page-7-0)*), a fusion protein of it with Ga_{16} should be particularly useful for orphan GPCRs.

Agonist-stimulated increases in the intracellular Ca2+ concentration in cultured cells expressing the relevant GPCRs are most commonly utilized to screen for ligands of GPCRs. $\rm G_{16}$ or a $\rm G_{q4}$ chimera is coexpressed for $\rm G_{i}$ -coupled receptors, because intracellular Ca^{2+} increases $\hbox{through endogenous } G_{\rm i} \hbox{ family } G \hbox{ proteins are usually dif-}$ ficult to detect (*[2](#page-7-23)*, *[3](#page-7-1)*, *[5](#page-7-24)*). We have transfected plasmids encoding GPCR-G α_{16} fusion proteins into Chinese hamster ovary (CHO) cells, and assayed the agonist-induced intracellular Ca2+ increases in these cells. We compared the results with those obtained by transfecting plasmids encoding the individual proteins. In addition, we measured agonist-stimulated prostaglandin E_2 (PGE₂) generation, since this assay method has been reported to be more sensitive as to the agonist concentration than agonist-stimulated inositoltrisphosphate formation (*[29](#page-7-25)*).

EXPERIMENTAL PROCEDURES

*cDNA Constructs—*A cDNA fragment encoding fulllength CX_3CR1 (GenBank accession No. U04808) was isolated by hybridization screening of a rat brain cDNA library, and cloned into pBluescript SK(–) using a Lambda ZAP II Vector/Gigapack Cloning Kit (Stratagene, La Jolla, CA) according to standard techniques (*[30](#page-7-26)*) and the manufacturer's instructions. To clone full-length urotensin II receptor cDNA (GenBank accession No. AB012210), rat urinary bladder poly A+ RNA was prepared using TRIzol (Life Technologies, Grand Island, NY) and oligotex-dT 30 (Takara Shuzo, Shiga), reverse transcribed, and then amplified by PCR, and the PCR product was cloned into pCR2.1 using a TA cloning kit (Invitrogen, Carlsbad, CA).

Each of the cDNAs encoding CX_3CR1 , urotensin II receptor, and Ga_{16} was subcloned into the mammalian expression vector pEF-BOS (*[31](#page-7-27)*) and the baculovirus transfer vector pFastBac1 (Life Technologies).

Plasmids encoding the fusion proteins $CX_3CR1-Ga_{i2}$ and $CX_3CR1-G\alpha_{16}$ were constructed through three PCR steps (32) (32) (32) . The cDNA encoding rat CX_3CR1 from which the stop codon had been removed was PCR-amplified from pBluescript-CX₃CR1. Bovine Ga_{i2} and human Ga₁₆ cDNAs were PCR-amplified separately by adding to their

5′ ends a 24-bp sequence corresponding to the 3′ end of the $CX₃CR1$ cDNA from which the stop codon had been removed. $CX₃CR1$ cDNA was subsequently fused to $Ga₃₂$ or Ga_{16} cDNA in a second PCR reaction, and the fusion products were amplified in a third PCR reaction. The PCR products were subcloned into pEF-BOS and the baculovirus transfer vector pBacPAK8 (CLONTECH Laboratories, Palo Alto, CA).

Urotensin II receptor cDNA was fused to Ga_{12} or Ga_{16} cDNA according to the same protocol. These PCR products were also subcloned into pEF-BOS and pBacPAK8. cDNAs encoding the M_1 -G α_{16} and M_2 -G α_{16} fusion proteins were PCR-amplified from pFastBac1- M_1 -G α_{16} and pFastBac1-M₂-G α_{16} ([22](#page-7-17)), respectively, and then ligated into pEF-BOS. All constructs were verified by restriction endonuclease mapping and DNA sequencing using an ABI PRISM 377 (PE Applied Biosystems, Foster City, CA).

*Transfection and Cell Culture—*CHO-K1 cells (Health Science Research Resources Bank, Osaka) were maintained in Ham's F-12 medium (Sigma, St. Louis, MO), supplemented with 10% heat-inactivated fetal bovine serum (JRH Biosciences, Lenexa, KS) and penicillin/ streptomycin (50 U/ml and 50 µg/ml, respectively; Life Technologies), at 37°C under a humidified atmosphere of 5% CO₂/95% air. For transient transfection, cells and plasmids were incubated with LipofectAMINE 2000 (Invitrogen) for 42–48 h, after which the stimulants were added. For stable transfection, the constructed plasmids were cotransfected with pEF-neo, which confers neomycin resistance on the cells, using a TransFast kit (Promega, Madison, WI). After 48 h, the cells were incubated in medium containing 400 µg/ml G418 (Nacalai Tesque, Kyoto) for 10 days, and G418-resistant clones were screened for expression of the relevant mRNA by reverse transcriptase-polymerase chain reaction (RT-PCR), and selected according to intracellular Ca2+ mobilization induced by the appropriate agonist. Of these clones, those exhibiting the highest $Ca²⁺$ increases were used for the subsequent assay.

*Sf9 Membrane Preparation and [35S]GTP*γ*S Binding Assay—*Sf9 cells were infected with recombinant baculoviruses, cultured for 72 h, and then harvested as previously described (*[22](#page-7-17)*). Membrane fractions were prepared by homogenization in 20 mM HEPES-KOH buffer (pH 8.0), 1 mM EDTA, 2 mM $MgCl₂$, 0.5 mM phenylmethylsulphonyl fluoride, 5 µg/ml leupeptin, 5 µg/ml pepstatin, and 5 mM benzamidine, using a Dounce homogenizer, and then centrifuged at 150,000 ×*g* for 30 min at 4°C. The pellets were homogenized in the same buffer and stored in aliquots at –80°C. Binding assays were performed as described with some modifications (*[22](#page-7-17)*). Briefly, membrane fractions containing 10 µg protein were incubated with 100 pM [³⁵S]GTPγS (DuPont-New England Nuclear, Boston, MA), various concentrations of GDP, and relevant agonists at 30°C for 30 min in 0.1 ml of 20 mM HEPES-NaOH buffer (pH 7.4), 1 mM EDTA, 1 mM DTT, 100 mM NaCl, and 10 mM MgCl₂. Reactions were terminated by filtration through GF/B Unifilter plates (Packard, Meriden, CT), followed by rinsing three times with cold 20 mM potassium phosphate buffer (pH 7.0) in a cell harvester. Radioactivity was measured with a liquid scintillation counter (TopCount; Packard).

*Intracellular Ca2+ Measurement—*Confluent CHO cells in a 96-well plate (Packard) were incubated in Hank's balanced salt solution (Life Technologies) containing 5 µM fura-2/AM (Molecular Probes, Eugene, OR) for 2 h at room temperature in the dark. After rinsing with Hank's balanced salt solution, the cells were incubated with an appropriate agonist, and the changes in intracellular Ca2+-dependent fluorescence were recorded using a fluorescence imaging plate reader (FDSS; Hamamatsu Photonics, Shizuoka). Fura-2 fluorescence was measured with excitation at 340 nm and 380 nm, and emission at 510 nm. The fluorescence intensity ratio, I_{340}/I_{380} , was utilized to determine intracellular Ca2+ mobilization.

PGE₂ Determination—Measurement of PGE₂ generation was performed as previously described (*[33](#page-7-29)*). Briefly, confluent CHO cells grown in 24-well plates (Costar, Corning, NY) were washed once with 0.5 ml of culture medium. The experiments were initiated by adding 0.19 ml of culture medium containing various stimulants. The cells were incubated for 4 h or the times indicated at 37°C under a humidified atmosphere of 5% CO₂/95% air. Subsequently, supernatants of the cells were collected and $PGE₂$ generation was measured using an enzyme immunoassay kit (Cayman Chemical, Ann Arbor, MI) according to the manufacturer's instructions.

*Semi-Quantitative RT-PCR—*Total cellular RNA was isolated using TRIzol, followed by treatment with DNase I. The RNA was reverse-transcribed using an oligo (dT) primer and then incubated with *Tth* RNaseH. For PCR amplification, CX_3CR1 and Ga_{16} primers were designed to amplify the full-length coding region. As controls, we utilized primers for glyceraldehyde-3-phosphate dehydrogenase (sense, 5′-ATGACCCCTTCATTGACCT-3′; and antisense, 5′-GTTGGGGGTAGGAACAC-3′). PCR was performed for 20, 25, 30 and 35 cycles. Aliquots of the PCR products were analyzed by electrophoresis on 1% agarose gels and visualized by ethidium bromide staining. The intensity of the bands at various cycle numbers was compared for each primer pair.

*Ligand Binding Assaying of CX3CR1—*Confluent cells cultured in 24-well plates were washed twice with Dulbecco's phosphate-buffered saline (Sigma) and then incubated with $1-100$ nM $[125]$ soluble fractalkine (sFKN) (specific activity, 2,000 Ci/mmol; [125I] human fractalkine chemokine domain; Amersham Pharmacia Biotech, Buckinghamshire, England) in 50 mM HEPES-NaOH buffer (pH 7.4), 150 mM NaCl, 5 mM MnCl₂, and 0.01% (w/v) BSA, for 1 h at 37 \degree C. After washing twice with phosphate-buffered saline, 1% Triton X-100 and 1 M NaOH were added sequentially to lyse the cells. The radioactivity bound to the cells was counted with a γ-counter (Cobra; Packard). Specific binding was determined by subtracting the binding of parental CHO cells from that of transfected CHO cells.

Materials—Plasmids pEF-BOS-human M_1 and pEF-BOS-human M_2 were donated by Drs. A. Fukuzaki and H. Tsuga, respectively ([34](#page-7-30)). $G\beta_1\gamma_2$ recombinant viruses were donated by Dr. F. Nakamura (*[35](#page-7-31)*). Recombinant human sFKN and human urotensin II were purchased from R&D Systems (Minneapolis, MN) and the Peptide Institute (Osaka), respectively. Enzymes for construction of cDNAs were purchased from Toyobo (Osaka), Takara Shuzo, Promega, New England Biolabs (Beverly, MA),

Fig. 1. **sFKN-induced [35S]GTP**γ**S binding to Sf9 cell membranes.** [35S]GTP_YS binding to membranes expressing CX_3CR1 (closed squares), $CX_3CR1-G\alpha_{i2}$ (open circles), $CX_3CR1-G\alpha_{16}$ (closed circles), and $CX_3CR1-G\alpha_{i2}$ plus $G\beta_1\gamma_2$ (inverted open triangles), and parental Sf9 membranes (closed diamonds) was measured in the presence of 10–6 M GDP as described under "EXPERIMENTAL PROCE-DURES." Changes in [35S]GTPγS binding are shown relative to the respective [35S]GTPγS binding in the absence of the agonist. In the absence of the agonist, [35S]GTPγS binding to membranes expressing CX_3CR1 , $CX_3CR1-G\alpha_{12}$, $CX_3CR1-G\alpha_{16}$ or $CX_3CR1-G\alpha_{12}$ plus $G\beta_1\gamma_2$, and parental Sf9 membranes was $1,499 \pm 17$ cpm, $1,836 \pm 39$ cpm, $1,155 \pm 13$ cpm, $4,465 \pm 86$ cpm, and $2,369 \pm 44$ cpm, respectively. Each point represents the mean \pm SEM of three determinations $(n = 3)$, and is representative of at least three independent experiments.

Life Technologies, and Boehringer Mannheim (Mannheim, Germany). Oligonucleotide primers were purchased from Japan Bio Service (Saitama).

RESULTS

*CX3CR1-G*α*16 Fusion Protein—*We utilized PCR to ligate $\text{CX}_3\text{CR1}$ cDNA to $\text{G}\alpha_{i2}$ or $\text{G}\alpha_{16}$ cDNA, and expressed $CX_3CR1-G\alpha_{i2}$ and $CX_3CR1-G\alpha_{16}$ fusion proteins in Sf9 cells. The interaction of GPCRs with Ga was determined by measuring the agonist-induced binding of nonhydrolyzable GTP analog $[^{35}S]$ GTPγS to G α in the presence of various concentrations of GDP. Using the 8.5 kDa chemokine domain of fractalkine ($sFKN$) as a $CX₃CR1$ -agonist, we observed agonist-dependent [35S]GTPγS binding to Sf9 cell membranes expressing $CX_3CR1-Ga_{i2}$, indicating that the fused CX_3CR1 and Ga_{i2} are functionally coupled (Fig. [1\)](#page-8-1). The EC_{50} was estimated to be $>2 \times 10^{-7}$ M. In contrast, sFKN did not affect [35S]GTPγS binding to membranes expressing either $CX_3CR1-Ga_{16}$ or CX_3CR1 alone. Coexpression of $G\beta_1\gamma_2$ subunits did not affect the sFKNinduced [³⁵S]GTP_γS binding to either $CX_3CR1-G\alpha_{i2}$ or $CX_3CR1-G\alpha_{16}.$

To determine if these fusion proteins can activate downstream signals, $CX_3CR1-Ga_{i2}$ and $CX_3CR1-Ga_{16}$ as well as CX_3CR1 or CX_3CR1 plus Ga_{16} were stably expressed in CHO cells, and the expression of CX_3CR1 and Ga_{16} was confirmed by semi-quantitative RT-PCR. In

Fig. 2. **Expression of CX₃CR1 and Gα₁₆ mRNA in stably transfected CHO cells.** Cells were stably transfected with a plasmid encoding CX₃CR1, CX₃CR1-G α_{i2} , CX₃CR1-G α_{16} or CX₃CR1 plus Ga_{16} , and then mRNA levels were determined by semi-quantitative RT-PCR using gene-specific primers for CX_3CR1 (a), Ga_{16} (b), and glyceraldehyde-3-phosphate dehydrogenase (c). The number of PCR cycles is indicated on the left of each gel. Representative gels of three experiments with similar results are shown.

CHO cells transfected with a plasmid encoding CX_3CR1 , $CX_3CR1-G\alpha_{12}$, $CX_3CR1-G\alpha_{16}$ or CX_3CR1 plus Ga_{16} , the level of CX_3CR1 -specific mRNA was essentially the same (Fig. [2a](#page-8-1)). The amounts of expressed CX_3CR1 assessed as $[125]$ SFKN binding sites were 0.41, 1.0, 0.61, and 0.54 pmol/mg total protein for cells transfected with $CX_{3}CR1$ alone, $CX_3CR1-G\alpha_{12}$, $CX_3CR1-G\alpha_{16}$, and CX_3CR1 plus Ga_{16} , respectively. The expression level of Ga_{16} mRNA was similar for cells transfected with $CX_3CR1-Ga_{16}$ and ones transfected with CX_3CR1 plus Ga_{16} (Fig. [2](#page-8-1)b). This result was confirmed by immunostaining with antiserum directed against the C-terminus of Ga_{16} (data not shown).

We examined whether or not sFKN can cause an increase in the intracellular Ca^{2+} concentration in these cells. While sFKN had no effect on the Ca^{2+} concentration in the parental CHO cells, it induced a slight increase in intracellular Ca2+ followed by a decrease to the basal level within \sim 3 min in cells transfected with CX₃CR1 (Fig. [3](#page-8-1)A) or $CX_3CR1-Ga_{i2}$ (data not shown). In contrast, the addition of sFKN to cells expressing $CX_3CR1-Ga_{16}$ induced a robust, sustained increase in intracellular Ca²⁺, with an EC₅₀ of approximately 3×10^{-9} M (Fig. [3](#page-8-1), A and B). In cells coexpressing CX_3CR1 and Ga_{16} , however, the sFKN-stimulated Ca2+ increase was smaller and more transient than in ones expressing $CX_3CR1-Ga_{16}$ (Fig. [3,](#page-8-1) A and B). Moreover, most clones (15 out of 16) transfected with $CX_3CR1-Ga_{16}$ exhibited an agonistinduced Ca2+ increase, while only a few clones (3 out of 12) cotransfected with CX₃CR1 plus Ga_{16} exhibited an

Fig. 3. **Ca2+ mobilization in stably transfected CHO cells.** Cells stably transfected with a plasmid encoding $\text{CX}_3\text{CR1}, \text{CX}_3\text{CR1-G}\alpha_{16}$ or CX_3CR1 plus Ga_{16} were loaded with 5 μ M fura-2, and then sFKNinduced changes in intracellular Ca2+ were measured using FDSS. (A) Dose-dependent intracellular Ca^{2+} responses in cells expressing CX₃CR1 alone, CX₃CR1-G α_{16} fusion protein or CX₃CR1 plus G α_{16} . sFKN concentrations are shown on the left. Changes in intracellular Ca²⁺ are expressed as I_{340}/I_{380} . Vertical dotted lines indicate the time of addition of sFKN. Each tracing is representative of three independent experiments performed in triplicate. (B) Doseresponse curves of intracellular Ca2+ mobilization. Cells expressing CX_3CR1 (closed squares), $CX_3CR1-G\alpha_{16}$ (closed circles), or CX_3CR1 plus Ga_{16} (closed triangles) were incubated with sFKN, and then intracellular Ca²⁺ increases were measured as Δ I₃₄₀/I₃₈₀, defined as the difference of I_{340}/I_{380} in the presence and absence of the ligand. No intracellular $\check{\mathrm{Ca}^{2+}}$ increase was induced by the addition of sFKN to the parental CHO cells. Each point represents the mean ± SEM of three determinations $(n = 3)$, and is representative of at least three independent experiments.

agonist-induced Ca^{2+} increase. The reason for the low frequency of functional expression by the latter is not known, but it is unlikely to be due to a low expression level because 10 out of 12 clones were found to be positive for both CX_3CR1 and Ga_{16} on RT-PCR. Various clones expressing $CX_3CR1-Ga_{16}$ showed similar Ca^{2+} increases and EC_{50} values, whereas clones coexpressing CX_3CR1

Fig. 4. PGE₂ generation in stably transfected CHO cells. (A) Time course of PGE_2 generation. Cells expressing CX_3CR1 (closed squares), $CX_3CR1-G\alpha_{16}$ (closed circles), or CX_3CR1 plus Ga_{16} (closed triangles) were stimulated with 10^{-8} M sFKN for the times indicated, and then PGE_2 released into the culture supernatant was measured using a PGE₂-enzyme immunoassay kit. A representative result of three experiments is shown. (B) Dose-response curves of PGE_2 generation. Cells expressing CX_3CR1 (closed squares), $CX_3CR1-G\alpha_{12}$ (open circles), $CX_3CR1-G\alpha_{16}$ (closed circles), or CX_3CR1 plus Ga_{16} (closed triangles), and parental CHO cells (closed diamonds) were stimulated with various concentrations of sFKN for 4 h, and then PGE₂ released into the culture supernatant was measured. A representative result of three experiments is shown.

plus Ga_{16} showed various Ca^{2+} increases. We chose clones exhibiting the highest Ca^{2+} increases in both cases and used them in the present studies.

We also examined agonist-induced $PGE₂$ generation in these clones. $sFKN$ -induced PGE_2 generation was detectable within 10 min, and increased gradually over 4 h (Fig. [4](#page-8-1)A). In both parental CHO cells and cells expressing $CX₃CR1$, sFKN had no effect on $PGE₂$ generation, while agonist-induced PGE_2 generation was somewhat higher in cells expressing $CX_3CR1-G\alpha_{i2}$ (Fig. [4](#page-8-1)B). In cells expressing $CX_3CR1-Ga_{16}$ (Fig. [4B](#page-8-1)), however, sFKN induced marked PGE_2 generation. The EC_{50} was estimated to be approximately 1×10^{-9} M. The ability of the

Fig. 5. Ca^{2+} mobilization and PGE_2 generation in CHO cells **transiently transfected with a plasmid encoding** M_2 **,** M_2 **-G** α_{16} or M_2 plus Ga_{16} . (A) Dose-response curves of intracellular Ca^{2+} mobilization. Cells expressing M_2 (closed squares), M_2 -G α_{16} (closed circles), or M_2 plus Ga_{16} (closed triangles) were loaded with 5 µM fura-2, and then carbamylcholine-induced changes in intracellular Ca²⁺ were determined as Δ I₃₄₀/I₃₈₀. No intracellular Ca²⁺ increase was induced by the addition of carbamylcholine to the parental CHO cells. A representative result of three experiments is shown. (B) Dose-response curves of PGE₂ generation. Cells expressing M_2 (closed squares), M_2 -G α_{16} (closed circles), or M_2 plus G α_{16} (closed triangles), and parental CHO cells (closed diamonds) were stimulated with various concentrations of carbamylcholine for 4 h, and then PGE_2 released into the culture supernatant was measured. A representative result of three experiments is shown.

agonist to induce PGE_2 generation was lower in cells coexpressing CX_3CR1 plus Ga_{16} (Fig. [4B](#page-8-1)) than in ones expressing $CX_3CR1-Ga_{16}$. In cells expressing CX_3CR1 - Ga_{16} , PGE₂ generation was approximately 11-fold higher in the presence of 10^{-8} M sFKN than in its absence, whereas in cells coexpressing $\text{CX}_3\text{CR1}$ plus $\text{G}\alpha_{16}$ and ones expressing $CX_3CR1-Ga_{i2}$, 1.6- and 3.3-fold increases, respectively, were observed.

 M_2 -*Ga*₁₆ Fusion Protein—We transiently expressed M_2 , M_2 -G α_{16} or M_2 plus G α_{16} in CHO cells, and then examined

Fig. 6. Ca^{2+} mobilization and PGE₂ generation in CHO cells **stably expressing urotensin II receptor, urotensin II recep**tor-Gα_{i2} or urotensin II receptor-Gα₁₆. (A) Dose-response curves of intracellular Ca2+ mobilization. Cells expressing urotensin II receptor (closed squares), urotensin II receptor- Ga_{i2} (open circles), or urotensin II receptor- Ga_{16} (closed circles), and parental CHO cells (closed diamonds) were loaded with 5μ M fura-2, and then urotensin II-induced changes in intracellular Ca²⁺, measured as ΔI_{340} I_{380} , were determined. Each point represents the mean \pm SEM of three determinations $(n = 3)$, and is representative of at least three independent experiments. (B) Dose-response curves of PGE_2 generation. Cells expressing urotensin II receptor (closed squares), urotensin II receptor-G α_{i2} (open circles), or urotensin II receptor-G α_{16} (closed circles), and parental CHO cells (closed diamonds) were stimulated with various concentrations of urotensin II for 4 h, and then PGE_2 released into the culture supernatant was measured. A representative result of three experiments is shown.

the effects of an agonist, carbamylcholine, on the intracellular Ca^{2+} increase and PGE_2 generation. Carbamylcholine had no effect on the intracellular Ca^{2+} concentration in the parental CHO cells, and induced a small, transient increase in cells expressing $M₂$. In contrast, we observed robust, prolonged agonist-induced increases in intracellular Ca²⁺ in cells transfected with M_2 -G α_{16} and ones cotransfected with M_2 plus Ga_{16} (Fig. [5A](#page-8-1)). When we

Fig. 7. PGE₂ generation in CHO cells transiently transfected with a plasmid encoding M_1 , M_1 -Ga₁₆ or M_1 plus Ga₁₆. Cells expressing M_1 (closed squares), M_1 -G α_{16} (closed circles), or M_1 plus Ga_{16} (closed triangles), and parental CHO cells (closed diamonds) were stimulated with various concentrations of carbamylcholine for $4 h$, and then PGE_2 released into the culture supernatant was measured. A representative result of three experiments is shown.

assayed carbamylcholine-induced $PGE₂$ generation in these cells, we observed robust stimulation in cells transfected with M_2 -G α_{16} , but not in ones transfected with M_2 or M_2 plus Ga_{16} (Fig. [5B](#page-8-1)).

*Urotensin II Receptor-G*α*¹⁶ Fusion Protein—*When we measured agonist-stimulated [³⁵S]GTPγS binding to Sf9 cell membranes expressing urotensin II receptor- Ga_{i2} or urotensin II receptor- Ga_{16} , we observed a reduced effect compared with in the case of cell membranes expressing $CX_3CR1-Ga_{i2}$ (data not shown). Urotensin II-stimulated $[35S]GTP_YS$ binding was only 1.5-fold higher in the presence of excess urotensin II than in its absence. The EC_{50} values for urotensin II receptor- Ga_{i2} and urotensin II receptor-G α_{16} were approximately $9\times\overline{10^{-9}}$ M and 4×10^{-8} M, respectively. Coexpression of $G\beta_1\gamma_2$ did not increase the effect of the agonist. Urotensin II did not affect $[35S]GTP_YS$ binding to membranes expressing urotensin II receptor alone.

We stably expressed urotensin II receptor- Ga_{i2} , urotensin II receptor- Ga_{16} or urotensin II receptor alone in CHO cells, and then examined the effects of the agonist on the intracellular Ca^{2+} increase and PGE_2 generation. The addition of urotensin II caused a robust, sustained increase in intracellular Ca^{2+} with EC_{50} values of 1.5–3.5 \times 10⁻⁹ M for all of these cells (Fig. [6A](#page-8-1)). Furthermore, each of these constructs showed marked PGE_2 generation in response to urotensin II stimulation with EC_{50} values of $<$ 10⁻¹⁰ M (Fig. [6](#page-8-1)B).

*M1-G*α*¹⁶ Fusion Protein—*To determine if the above observation could be applied to other G_q -coupled receptors, we also examined cells transiently transfected with M_1, M_1 -G α_{16} or M_1 plus G α_{16} . In response to agonist carbamylcholine, each showed marked $PGE₂$ generation (Fig. [7](#page-8-1)), as well as a robust, sustained increase in intracellular Ca2+ (not shown).

DISCUSSION

It has been reported that GPCRs and Ga interact more efficiently when they are fused than when they are expressed as independent entities (*[17](#page-7-12)*–*[21](#page-7-16)*). It has also been shown that Ga_{16} interacts with different kinds of GPCRs, which are coupled to $\mathrm{G}_{\mathrm{s}},$ G_{i} or G_{q} family $\mathrm{G}% _{\mathrm{r}}$ proteins (*[9](#page-7-5)*, *[10](#page-7-6)*). These findings suggest that fusion proteins of GPCRs with Ga_{16} may be useful for the screening of endogenous and surrogate ligands of GPCRs, and this s creening should be particularly useful for G_i -coupled receptors and orphan GPCRs, because efficient screening systems are not available for G_{i} -coupled receptors, and coupled G proteins are usually unknown for orphan GPCRs. We therefore expressed fusion proteins of Ga_{16} and four GPCRs— CX_3CR1 , M_2 receptor, urotensin II receptor, and M_1 receptor—in CHO cells as model systems, and examined whether or not GPCR-G α_{16} fusion proteins could activate downstream signals and be used as ligand screening systems.

We found that cells expressing $CX_3CR1-G\alpha_{16}$ fusion protein showed greater responses as to an agonistinduced intracellular Ca^{2+} increase and PGE_2 generation than ones expressing CX_3CR1 and Ga_{16} together but as independent entities. While previous reports suggested that the coexpression of G_i-coupled receptors with Ga_{16} may be utilized to screen for ligands (*[12](#page-7-8)*, *[13](#page-7-9)*), our results for both $CX_3CR1-G\alpha_{16}$ and $M_2-G\alpha_{16}$ indicate that a strategy involving fusion proteins of $\mathrm{G}_\mathrm{i}\text{-}\mathrm{coupled\,reeptors}$ with Ga_{16} would be more effective and sensitive than the coexpression method. Furthermore, it should be noted that more than 90% of $CX_3CR1-Ga_{16}$ transfected clones showed a robust agonist-induced Ca^{2+} increase, whereas only 25% of clones cotransfected with CX_3CR1 plus Ga_{16} showed an agonist-induced Ca^{2+} increase. This is particularly important when ligands for orphan GPCRs are screened, because positive control experiments are not possible in the initial stage.

Fusion proteins of G_i-coupled receptors with Ga_{15} , a mouse homologue of human Ga_{16} , have been reported for α_{2A} , α_{2B} , and α_{2C} -adrenoceptors, and 5-HT_{1A} receptor (*[36](#page-8-3)*–*[39](#page-8-4)*). They were expressed in CHO cells, and agonistinduced increases in intracellular Ca^{2+} concentration were detected. The cells expressing a fusion protein of α_{2B} -adrenoceptor showed greater responses to an agonist than ones coexpressing α_{2B} -adrenoceptor with Ga_{15} ([37](#page-8-5)), which is consistent with the present results for CX_3CR1 - Ga_{16} and M_2-Ga_{16} . On the other hand, cells expressing a fusion protein of α_{2A} -adrenoceptor or 5-HT_{1A} receptor with Ga_{15} have been reported to be less sensitive to each agonist than ones coexpressing α_{2A} -adrenoceptor or 5- HT_{1A} receptor with Ga_{15} ([36](#page-8-3), [39](#page-8-4)), and cells expressing a fusion protein of α_{2C} -adrenoceptor with Ga_{15} showed a weak Ca2+ response to an agonist (*[38](#page-8-6)*).

To the best of our knowledge, there have been no reports on agonist-induced stimulation of cells expressing fusion proteins of G_q - or G_s -coupled receptors with Ga_{16} . Here we have shown that in cells expressing fusion proteins of Ga_{16} with G_q -coupled receptors, *i.e.* urotensin II receptor and M_1 , relevant agonists induced marked responses, although the extent of stimulation was similar to that in cells expressing each receptor alone. In addition, our preliminary findings indicate that G_s -coupled $β_2$ -adrenoceptors coexpressed with Ga_{16} in CHO cells are able to mediate agonist-induced generation of PGE_2 (data not shown). Taken together, these results suggest that an assay system involving GPCR- Ga_{16} fusion proteins might be applied to many, but not all GPCRs.

We utilized three assays to test the effects of agonists on GPCRs–[35S]GTPγS binding to Sf9 cell membranes, an intracellular Ca^{2+} increase, and PGE_2 generation. Agonistinduced [35S]GTPγS binding has been clearly observed for membranes expressing fusion proteins with Ga_i of G_i coupled receptors, and suitable for the screening ligands of Gi -coupled receptors (*[22](#page-7-17)*, *[40](#page-8-2)*, this study and unpublished data *[41](#page-8-0)*, *[42](#page-8-7)*). The agonist-induced [35S]GTPγS binding assay is simple and suitable for large-scale screening, although it is not as sensitive as other assays that involve cultured cells. In the case of fusion proteins with $\rm Ga_{16}$ of $\rm G_i$ - or $\rm G_q$ -coupled receptors, however, the extent of the agonist effect on Sf9 membrane preparations was much less than that for fusion proteins with Ga_i of G_i coupled receptors (*[22](#page-7-17)* and this study). An agonist-induced $Ca²⁺$ increase is used most commonly for the large-scale screening of ligands. As shown in the present report, it is useful for fusion proteins with Ga_{16} of G_i - or G_q -coupled receptors. Furthermore, we showed that agonist-induced $PGE₂$ generation is also useful for such fusion proteins and more sensitive than the Ca^{2+} assay. It might be utilized for the screening of endogenous ligands, since the amounts of available endogenous ligands are usually very limited. The demerit of these screening systems involving whole cells is the false positive responses with endogenous GPCRs. Coexpression of Ga_{16} with exogenous GPCRs might also cause increases in the responses by endogenous GPCRs. Fusion proteins of exogenous GPCRs with Ga_{16} might increase the responses through exogenous but not endogenous GPCRs. Thus, $\text{GPCR-G}\alpha_{16}$ fusion proteins might be effective in reducing false positive responses.

In summary, we have shown that cells expressing fusion proteins with $\rm Ga_{16}$ of $\rm G_i$ - and $\rm G_q$ -coupled receptors are responsive to agonists and activate downstream signaling. We have also found that agonist-induced cellular responses were greater for cells expressing fusion proteins with Ga_{16} of G_i -coupled receptors than for ones $\text{expressing } G_i\text{-coupled receptor alone or both } G_i\text{-coupled}$ receptor and Ga_{16} separately. These results suggest that $\text{GPCR-G}\alpha_{16}$ fusion proteins may provide an effective means of the screening of ligands of $\mathrm{G}_\mathrm{i}\text{-coupled receptors}$ and orphan GPCRs.

This work was supported in part by Grants-in-Aid for Scientific Research, Nos. 10771277 and 12771393, from the Ministry of Education, Culture, Sports, Science and Technology of Japan to H.S., and by grants from the Japan Science and Technology Corporation (CREST) and the Ministry of Education, Culture, Sports, Science and Technology of Japan (the Special Coordination Fund for the Promotion of Science and Technology) to T.H. We sincerely thank Drs. Melvin Simon for the human Ga_{16} cDNA, Shigekazu Nagata for the pEF-BOS and pEF-neo, and Atsushi Fukuzaki for the pEF-BOS-human M_1 , and for his help in preparing stable clones expressing urotensin II receptor-G α_{i2} and urotensin II receptor-G α_{16} . We are also grateful to Mr. Tomoaki Okada for his help in the culture of Sf9 cells.

REFERENCES

- 1. Stadel, J.M., Wilson, S., and Bergsma, D.J. (1997) Orphan G protein-coupled receptors: a neglected opportunity for pioneer drug discovery. *Trends Pharmacol. Sci.* **18**, 430–437
- 2. Wilson, S., Bergsma, D.J., Chambers, J.K., Muir, A.I., Fantom, K.G., Ellis, C., Murdock, P.R., Herrity, N.C., and Stadel, J.M. (1998) Orphan G-protein-coupled receptors: the next generation of drug targets? *Br. J. Pharmacol.* **125**, 1387–1392
- 3. Wise, A., Gearing, K., and Rees, S. (2002) Target validation of G-protein coupled receptors. *Drug Discov. Today* **7**, 235–246
- 4. Civelli, O., Nothacker, H.P., Saito, Y., Wang, Z., Lin, S.H., and Reinscheid, R.K. (2001) Novel neurotransmitters as natural ligands of orphan G-protein-coupled receptors. *Trends Neurosci.* **24**, 230–237
- 5. Howard, A.D., McAllister, G., Feighner, S.D., Liu, Q., Nargund, R.P., Van der Ploeg, L.H., and Patchett, A.A. (2001) Orphan Gprotein-coupled receptors and natural ligand discovery. *Trends Pharmacol. Sci.* **22**, 132–140
- 6. Takeda, S., Kadowaki, S., Haga, T., Takaesu, H., and Mitaku, S. (2002) Identification of G protein-coupled receptor genes from the human genome sequence. *FEBS Lett.* **520**, 97–101
- 7. Amatruda, T.T., Steele, D.A., Slepak, V.Z., and Simon, M.I. (1991) Ga16, a G protein α subunit specifically expressed in hematopoietic cells. *Proc. Natl Acad. Sci. USA* **88**, 5587–5591
- 8. Wilkie, T.M., Scherle, P.A., Strathmann, M.P., Slepak, V.Z., and Simon, M.I. (1991) Characterization of G-protein α subunits in the G_o class: expression in murine tissues and in stromal and hematopoietic cell lines. *Proc. Natl Acad. Sci. USA* **88**, 10049– 10053
- 9. Offermanns, S. and Simon, M.I. (1995) $G\alpha_{15}$ and $G\alpha_{16}$ couple a wide variety of receptors to phospholipase C. *J. Biol. Chem.* **270**, 15175–15180
- 10. Milligan, G., Marshall, F., and Rees, S. (1996) G_{16} as a universal G protein adapter: implications for agonist screening strategies. *Trends Pharmacol. Sci.* **17**, 235–237
- 11. Kostenis, E. (2001) Is Ga_{16} the optimal tool for fishing ligands of orphan G-protein-coupled receptors? *Trends Pharmacol. Sci.* **22**, 560–564
- 12. Chambers, J.K., Macdonald, L.E., Sarau, H.M., Ames, R.S., Freeman, K., Foley, J.J., Zhu, Y., McLaughlin, M.M., Murdock, P., McMillan, L., Trill, J., Swift, A., Aiyar, N., Taylor, P., Vawter, L., Naheed, S., Szekeres, P., Hervieu, G., Scott, C., Watson, J.M., Murphy, A.J., Duzic, E., Klein, C., Bergsma, D.J., Wilson, S., and Livi, G.P. (2000) A G protein-coupled receptor for UDPglucose. *J. Biol. Chem.* **275**, 10767–10771
- 13. Elshourbagy, N.A., Ames, R.S., Fitzgerald, L.R., Foley, J.J., Chambers, J.K., Szekeres, P.G., Evans, N.A., Schmidt, D.B., Buckley, P.T., Dytko, G.M., Murdock, P.R., Milligan, G., Groarke, D.A., Tan, K.B., Shabon, U., Nuthulaganti, P., Wang, D.Y., Wilson, S., Bergsma, D.J., and Sarau, H.M. (2000) Receptor for the pain modulatory neuropeptides FF and AF is an orphan G protein-coupled receptor. *J. Biol. Chem.* **275**, 25965– 25971
- 14. Seifert, R., Wenzel-Seifert, K., and Kobilka, B.K. (1999) GPCR-Gα fusion proteins: molecular analysis of receptor-G-protein coupling. *Trends Pharmacol. Sci.* **20**, 383–389
- 15. Milligan, G. (2000) Insights into ligand pharmacology using receptor-G-protein fusion proteins. *Trends Pharmacol. Sci.* **21**, 24–28
- 16. Wurch, T. and Pauwels, P.J. (2001) Analytical pharmacology of G protein-coupled receptors by stoichiometric expression of the receptor and G_a protein subunits. *J. Pharmacol. Toxicol. Methods* **45**, 3–16
- 17. Bertin, B., Freissmuth, M., Jockers, R., Strosberg, A.D., and Marullo, S. (1994) Cellular signaling by an agonist-activated receptor/Gsα fusion protein. *Proc. Natl Acad. Sci. USA* **91**, 8827–8831
- 18. Seifert, R., Lee, T.W., Lam, V.T., and Kobilka, B.K. (1998) Reconstitution of β_2 -adrenoceptor-GTP-binding-protein interaction in Sf9 cells: high coupling efficiency in a β_2 -adrenoceptor-Gsα fusion protein. *Eur. J. Biochem.* **255**, 369–382
- 19. Fong, C.W. and Milligan, G. (1999) Analysis of agonist function at fusion proteins between the IP prostanoid receptor and cognate, unnatural and chimaeric G-proteins. *Biochem. J.* **342**, 457–463
- 20. Wise, A., Sheehan, M., Rees, S., Lee, M., and Milligan, G. (1999) Comparative analysis of the efficacy of A_1 adenosine receptor activation of $G_{ij0} \alpha G$ proteins following coexpression of receptor and G protein and expression of A_1 adenosine receptor- $G_{i/0}$ α fusion proteins. *Biochemistry* **38**, 2272–2278
- 21. McAllister, G., Stanton, J.A., Salim, K., Handford, E.J., and Beer, M.S. (2000) Edg2 receptor functionality: $Gi\alpha1$ coexpression and fusion protein studies. *Mol. Pharmacol.* **58**, 407–412
- 22. Guo, Z.D., Suga, H., Okamura, M., Takeda, S., and Haga, T. (2001) Receptor-G α fusion proteins as a tool for ligand screening. *Life Sci.* **68**, 2319–2327
- 23. Parker, E.M., Kameyama, K., Higashijima, T., and Ross, E.M. (1991) Reconstitutively active G protein-coupled receptors purified from baculovirus-infected insect cells. *J. Biol. Chem.* **266**, 519–527
- 24. Dell'Acqua, M.L., Carroll, R.C., and Peralta, E.G. (1993) Transfected m2 muscarinic acetylcholine receptors couple to $G_{\alpha i2}$ and G_{oi3} in Chinese hamster ovary cells. Activation and desensitization of the phospholipase C signaling pathway. *J. Biol. Chem.* **268**, 5676–5685
- 25. Offermanns, S., Wieland, T., Homann, D., Sandmann, J., Bombien, E., Spicher, K., Schultz, G., and Jakobs, K.H. (1994) Transfected muscarinic acetylcholine receptors selectively couple to G_i-type G proteins and G_{q/11}. *Mol. Pharmacol*. **45**, 890– 898
- 26. Imai, T., Hieshima, K., Haskell, C., Baba, M., Nagira, M., Nishimura, M., Kakizaki, M., Takagi, S., Nomiyama, H., Schall, T.J., and Yoshie, O. (1997) Identification and molecular characterization of fractalkine receptor $CX_{3}CR1$, which mediates both leukocyte migration and adhesion. *Cell* **91**, 521–530
- 27. Berstein, G., Blank, J.L., Smrcka, A.V., Higashijima, T., Sternweis, P.C., Exton, J.H., and Ross, E.M. (1992) Reconstitution of agonist-stimulated phosphatidylinositol 4, 5-bisphosphate hydrolysis using purified m1 muscarinic receptor, $G_{q/11}$, and phospholipase C-β1. *J. Biol. Chem.* **267**, 8081–8088
- 28. Ames, R.S., Sarau, H.M., Chambers, J.K., Willette, R.N., Aiyar, N.V., Romanic, A.M., Louden, C.S., Foley, J.J., Sauermelch, C.F., Coatney, R.W., Ao, Z., Disa, J., Holmes, S.D., Stadel, J.M., Martin, J.D., Liu, W.S., Glover, G.I., Wilson, S., McNulty, D.E., Ellis, C.E., Elshourbagy, N.A., Shabon, U., Trill, J.J., Hay, D.W., Ohlstein, E.H., Bergsma, D.J., and Douglas, S.A. (1999) Human urotensin-II is a potent vasoconstrictor and agonist for the orphan receptor GPR14. *Nature* **401**, 282–286
- 29. Catalioto, R.M., Cucchi, P., Renzetti, A.R., Criscuoli, M., and Maggi, C.A. (1998) Independent coupling of the human tachykinin $NK₂$ receptor to phospholipases C and $A₂$ in transfected Chinese hamster ovary cells. *Naunyn-Schmiedeberg's Arch. Pharmacol.* **358**, 395–403
- 30. Sambrook, J., Fritsch, E.F., and Maniatis, T. (1989) *Molecular Cloning. A Laboratory Manual*, Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY
- 31. Mizushima, S. and Nagata, S. (1990) pEF-BOS, a powerful mammalian expression vector. *Nucleic Acids Res.* **18**, 5322
- 32. Wurch, T., Lestienne, F., and Pauwels, P.J. (1998) A modified overlap extension PCR method to create chimeric genes in the absence of restriction enzymes. *Biotechnol. Tech.* **12**, 653–657
- 33. Suga, H., Murakami, M., Kudo, I., and Inoue, K. (1995) Exogenous type-II phospholipase A_2 stimulates prostaglandin synthesis in rat liver-derived BRL-3A cells in the presence of tumor necrosis factor α. *J. Biochem.* **118**, 939–945
- 34. Tsuga, H., Kameyama, K., Haga, T., Kurose, H., and Nagao, T. (1994) Sequestration of muscarinic acetylcholine receptor m2 subtypes. Facilitation by G protein-coupled receptor kinase (GRK2) and attenuation by a dominant-negative mutant of GRK2. *J. Biol. Chem.* **269**, 32522–32527
- 35. Nakamura, F., Kato, M., Kameyama, K., Haga, T., Nukada, T., Kato, H., Takenawa, T., and Kikkawa, U. (1995) Characterization of G_q family G proteins $G_{L1} \alpha$ ($G_{14} \alpha$), $G_{L2} \alpha$ ($G_{11} \alpha$), and $G_q \alpha$

expressed in the baculovirus-insect cell system. *J. Biol. Chem.* **270**, 6246–6253

- 36. Pauwels, P.J., Finana, F., Tardif, S., Colpaert, F.C., and Wurch, T. (2000) Agonist efficacy at the α_{2A} -adrenoceptor: $G_{\alpha15}$ fusion protein: an analysis based on $\overline{C}a^{2+}$ responses. *Naunyn*-*Schmiedeberg's Arch. Pharmacol.* **361**, 672–679
- 37. Pauwels, P.J., Tardif, S., Finana, F., Wurch, T., and Colpaert, F.C. (2000) Ligand-receptor interactions as controlled by wildtype and mutant Thr³⁷⁰Lys α_{2B} -adrenoceptor-G_{α_{15}} fusion proteins. *J. Neurochem.* **74**, 375–384
- 38. Pauwels, P.J., Wurch, T., Tardif, S., Finana, F., and Colpaert, F.C. (2001) Analysis of ligand activation of α_2 -adrenoceptor subtypes under conditions of equal G_{α} protein stoichiometry. *Naunyn-Schmiedeberg's Arch. Pharmacol.* **363**, 526–536
- 39. Wurch, T., Colpaert, F.C., and Pauwels, P.J. (2003) Mutation in a protein kinase C phosphorylation site of the $5-HT_{1A}$ receptor preferentially attenuates Ca^{2+} responses to partial as opposed

to higher-efficacy 5-HT_{1A} agonists. *Neuropharmacology* 44, 873–881

- 40. Takeda, S., Yamamoto, A., Okada, T., Matsumura, E., Nose, E., Kogure, K., Kojima, S., and Haga, T. (2003) Identification of surrogate ligands for orphan G protein-coupled receptors. *Life Sci.* **74**, 367—377
- 41. Zhang, Q., Okamura, M., Guo, Z.D., and Haga, T. Effects of partial agonists and Mg^{2+} ions on the interaction of M_2 muscarinic acetylcholine receptor and G protein Ga_{i1} subunit in the M_2 -G α_{i1} fusion protein (accompanying paper).
- 42. Takeda, S., Okada, T., Okamura, M., Haga, T., Isoyama-Tanaka, J., Kuwahara, H., and Minamino, N. The receptor-Gα fusion protein as a tool for ligand screening: a model study using a nociceptin receptor- Ga_{i2} fusion protein (accompanying paper).